Developing Live Biotherapeutics to Target the Gut-Brain Axis
This document, which is personal to the recipient and has also been prepared by, and is the sole responsibility of, 4D pharma plc (the “Company”), comprises these presentation slides (the “Slides”) for the sole use at a presentation concerning the Company.

The information in these Slides does not constitute or form part of an admission document, listing particulars or prospectus relating to the Company or any subsidiary of the Company (together the “Group”), does not constitute an offer or invitation to purchase or subscribe for any securities of the Company, and should not be relied upon in connection with a decision to purchase or subscribe for any such securities. The Slides and the accompanying verbal presentation do not constitute a recommendation regarding any decision to sell or purchase securities in the Company.

The Slides and the accompanying verbal presentation are confidential, and the Slides are being supplied to you solely for your information and, unless otherwise agreed in writing by the Company, may not be reproduced, distributed or otherwise disclosed to any other person, or published (in whole or in part) for any purpose. No reliance may be placed for any purpose whatsoever on the information contained in the Slides and the accompanying verbal presentation or the completeness or accuracy of such information. No representation or warranty, express or implied, is given by or on behalf of the Company or its shareholders, directors, officers or employees, or any other person as to the accuracy or completeness of the information or opinions contained in the Slides and the accompanying verbal presentation, and no liability is accepted for any such information or opinions (including in the case of negligence, but excluding any liability for fraud).

The Slides contain forward-looking statements, which relate (among other things) to the Group’s proposed strategy, plans and objectives. By its very nature, such forward-looking information requires the Group to make assumptions that may or may not materialise. Such forward-looking statements may be price-sensitive and involve known and unknown risks, uncertainties and other important factors beyond the control of the Group that could cause the actual performance or achievements of the Group to be materially different from such forward-looking statements. Accordingly, you should not rely on any forward-looking statements, and the Group accepts no obligation to disseminate any updates or revisions to such forward-looking statements.

This presentation has not been verified and is subject to further changes and amendments. The Slides and their contents are directed only at persons who fall within the exemptions contained in Articles 19 and 49 of the Financial Services and Markets Act 2000 (Financial Promotion) Order 2005 (such as persons who are authorised or exempt persons within the meaning of the Financial Services and Markets Act 2000, and certain other persons having professional experience relating to investments, high net worth companies, unincorporated associations or partnerships and the trustees of high value trusts) and persons to whom distribution may otherwise lawfully be made. Any investment, investment activity or controlled activity to which the Slides relate is available only to such persons and will be engaged in only with such persons.

Persons of any other description, including those that do not have professional experience in matters relating to investments, should not rely or act upon the Slides. The Slides should not be distributed, published, reproduced or otherwise made available in whole or in part by recipients to any other person and, in particular, should not be distributed to persons with an address in the United States of America, Australia, the Republic of South Africa, the Republic of Ireland, Japan or Canada, or in any other country outside the United Kingdom where such distribution may lead to a breach of any legal or regulatory requirement. No securities commission or similar authority in Canada has in any way passed on the merits of the Company’s shares, and any representation to the contrary is an offence. No document in relation to the Company’s shares has been, or will be, lodged with, or registered by, The Australian Securities and Investments Commission, and no registration statement has been, or will be, filed with the Japanese Ministry of Finance in relation to the Company’s shares. Accordingly, subject to certain exceptions, the Company’s shares may not, directly or indirectly, be offered or sold within Canada, Australia, Japan, South Africa or the Republic of Ireland or offered or sold to a resident of Canada, Australia, Japan, South Africa or the Republic of Ireland. The Company’s shares have not been, and will not be, registered under the United States Securities Act of 1933 (as amended, the “US Securities Act”), or with any securities regulatory authority of any state or other jurisdiction of the United States, and may not be offered or sold within the United States or to, or for the account or benefit of, any US Person as that term is defined in Regulation S under the US Securities Act. The Company has not been registered and will not register under the United States Investment Company Act of 1940, as amended.

By attending the presentation and/or accepting this document you agree to be bound by the foregoing limitations and restrictions and, in particular, will be taken to have represented, warranted and undertaken that you have read and agree to comply with the contents of this notice.
The Company
4D PHARMA - INTEGRATED DEVELOPMENT FROM CONCEPT TO CLINIC

4D pharma is a leader in the development of single strain LBPs, a novel class of drug derived from the human gut microbiome

- Bench to bedside in-house – true end-to-end microbiome company
- Fully developed infrastructure and expertise, from strain isolation through to manufacturing
- Significant experience in navigating the regulatory landscape to deliver clinic-ready candidates

MicroRx® platform - extensive library of strains, focus on functionality, adaptable platform
Research collaboration with MSD in vaccines
World-leading IP estate with multi-layered protection facilitated by detailed mechanistic understanding

3000L, cGMP-certified manufacturing capabilities, unique in the microbiome space
CMC and ‘manufacturability’ integrated early into candidate development to accelerate progression into the clinic
Production for 4 clinical trials in parallel

4 clinical-stage candidates across multiple TAs
Clinical collaboration with MSD in I-O
Positive early signals for MRx0518 + Keytruda
CORE PIPELINE ADDRESSING KEY GLOBAL DISEASES

<table>
<thead>
<tr>
<th>Programmes</th>
<th>DISCOVERY</th>
<th>PRECLINICAL</th>
<th>DEVELOPMENT</th>
<th>PHASE I</th>
<th>PHASE II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immuno-oncology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MRx0518 Solid tumours – Combination study with Keytruda®</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MRx0518 Solid tumours – Monotherapy study (Tx naive neoadjuvant)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MRx0518 Pancreatic cancer – Monotherapy study (neoadjuvant)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MRx0573 New solid tumour types</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MRx1299 HDACi – New solid tumour types</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastro-intestinal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blautix® Irritable Bowel Syndrome</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thetanix® Crohn’s Disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respiratory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MRx-4DP0004 COVID-19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MRx-4DP0004 Asthma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MRx0005 Neurodegeneration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MRx0029 Neurodegeneration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Platform</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaccines</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autoimmune</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FOCUS ON FUNCTIONALITY: MicroRx® PLATFORM

Product development
- Integrated scale-up and optimization
- Strain-specific fermentation and formulation

Strain engineering
- Gene disruption/deletion
- Recombinant protein expression

Isolation
- Significant culturomics expertise
- Broad coverage and diversity
- Previously unisolated organisms

Discovery

Proteomics/lipidomics
- Cell surface shaving
- Characterisation of secreted proteins
- Targeted and driven by host signalling data

Genome mining
- Whole genome sequencing
- Comparative genomics and bioinformatics

Host-response assays
- Suite of host cells, spheroids/organoids
- Rodent models (disease, SPF, GF)

Metabolomics
- Metabolomic fractionation
- Exhaustive profiling of effector molecules

Isolation

Discovery

Pathways

Isolation
The Gut-Brain Axis: MicroRx® Drug Discovery Platform
The gut-brain axis plays a critical, yet poorly defined role in the aetiology of neurodegenerative and psychiatric disorders, highlighting the crucial role of the gut and the microbiome on central nervous system processes

- The gut microbiota can affect neurological processes and pathophysiology, from stress responses to neurodegenerative disorders

- Significant differences in the gut microbiota of patients with neurological disorders compared to age-matched healthy controls

- Gastrointestinal symptoms are a common comorbidity of CNS disorders and often manifest years before any clinical CNS manifestations are confirmed

- Changes in gut-brain communication could lead to neural network defects and CNS disorders, including:
 - Gut permeability
 - Production of neuromodulatory compounds
 - Activation of the enteric nervous system (ENS)
 - Vagus nerve function
 - Peripheral immune system, microglia and astrocytes
• Previous approaches to NDDs have failed to achieve disease modification
• High unmet need for new therapeutic strategies for brain-related conditions
• MicroRx® has generated clinical candidates in oncology, respiratory and gastrointestinal disease
• Now taking 4D into neurodegeneration, specifically targeting neuroinflammation and neuroprotection
• Focus on restoring gut-brain axis communication by assessing inter-tissue signalling between gut, periphery and CNS
• Combination of *in vitro* and *ex vivo* cell-derived functional systems and *in vivo* translational models

Commensal effector molecules
- Neuroprotection
- Neuroinflammation
- Neurodifferentiation
- Protein misfolding and aggregation
- Blood-brain barrier function

Commensal signalling molecules
- Neurotransmitters
- Anti-inflammatory mediators
- Antioxidants
- Indoles
- Tryptophan
- Polyphenols

Commensal bacterial strains
- Gut barrier function
- Anti-inflammatory properties
- Gut dysbiosis
- Short-chain fatty acids
- Tryptophan, Indole
- Protein misfolding and aggregation
- Drug interactions

© 4D pharma plc
Neurodegenerative Disorders:
Parkinson’s Disease
Parkinson’s Disease

- Most common movement disorder: ~10M people worldwide
- Two forms of PD: idiopathic and familial
- Deterioration of motor function due to loss of dopamine-producing brain cells in the motor region of the brain
- Linked to accumulation or dysfunction of misfolded α-synuclein in Lewy bodies

The gut microbiome in PD

- PD patients experience GI symptoms and gut microbiome changes decades before motor symptoms and CNS involvement
- Transplantation of faecal microbiota from PD patients into mice leads to motor deficits and neuroinflammation
- Presence of α-synuclein in the mucosal and submucosal nerve fibres and ganglia of individuals with Parkinsonian syndrome
- Gut microbiome could influence the course of neurological disorders via interfering with medications such as L-DOPA
MicroRx® platform has identified two gut commensal bacterial strains which show strong potential for the treatment of neurodegenerative diseases, such as PD:

- MRx0029 – *Megasphaera massiliensis*
- MRx0005 – *Parabacteroides distasonis*

SUMMARY OF NEURODEGENERATION PROGRAM TO DATE

- Reduction of neuroinflammation (cytokine production, TLR4/NF-kB signalling)
- Protection of neuronal cells from oxidative stress
- Promotion of intestinal barrier integrity
- Induction of dopaminergic neuronal differentiation
- Protection of dopaminergic neurons and increased dopamine and DOPAC

LBP candidates progressing through development cycle

Rapid progression into first-in-man trial in patients
ANIMAL MODELS OF PARKINSON’S DISEASE (PD)

Different models (environmental & genetic) replicate different features of PD:
• Degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc)
• Deficiency of striatal dopamine (DA) and metabolites (DOPAC and HVA)
• Aggregation of α-synuclein (Lewy body-like pathology) in the CNS, PNS and ENS
• Neuroinflammation, associated with alterations to many cell types (microglia)
• Gastrointestinal and olfactory dysfunction
• Progressive motor dysfunction and cognitive decline

<table>
<thead>
<tr>
<th>Neurotoxic-induced Parkinsonian syndrome</th>
<th>Transgenic models of PD-related genes</th>
<th>Viral vector-based models of PD</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 6-hydroxydopamine (6-OHDA) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)</td>
<td>• SNCA, PINK1, PARK7, DJ-1, Parkin and LRRK2</td>
<td>• Viral (AAV/Lentiviral) delivery vehicle</td>
</tr>
<tr>
<td>• Degeneration of dopaminergic neurons</td>
<td>• No dopaminergic neuron degeneration</td>
<td>• Irregular forms of α-synuclein</td>
</tr>
<tr>
<td>• Reduced DA, DOPAC and HVA levels</td>
<td>• No reduction in DA, DOPAC and HVA</td>
<td>• Degeneration of dopaminergic neurons</td>
</tr>
<tr>
<td>• Limited α-synuclein aggregation, restricted to chronic MPTP model</td>
<td>• α-synuclein aggregation apparent, restricted to A53T and A30P models</td>
<td>• Reduced DA, DOPAC and HVA levels</td>
</tr>
<tr>
<td>• Limited behavioural readouts</td>
<td>• Prominent behavioural deficits</td>
<td>• Delivery of α-synuclein to SNc results in Lewy body-like pathology</td>
</tr>
<tr>
<td>• Useful to study mechanism of cell death</td>
<td>• Useful to study roles of α-synuclein aggregation and mutations related to PD</td>
<td>• Prominent behavioural deficits</td>
</tr>
<tr>
<td>• Environmental pesticides also implicated</td>
<td></td>
<td>• Useful to study PD-pathology including cell death and α-synuclein aggregation</td>
</tr>
</tbody>
</table>

Dopaminergic neurons in SNc in an MPTP model

α-synuclein accumulation in A53T transgenic mice

α-synuclein accumulation and loss of dopaminergic neurons in an AAV-A53T model
THE MPTP MOUSE MODEL OF PD

Model summary

- **Model**: 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine (MPTP)-Induced Parkinsonian Syndrome
- **Disease Induction**: MPTP administered i.p. at a dose of 20mg/kg, twice a day for five days
- **Animal Strain**: Male C57BL/6 mice (7 weeks of age)
- **Positive Control**: 7-nitroindazole (50 mg/kg; i.p.; b.i.d.)
- **Length of Model**: 35 days (14 days pre-treatment + 21 days in vivo)

Key readouts

- DA transporter levels
- Dopamine and metabolites
- Quantification of dopaminergic neurons
- 16S microbiome analysis
- Cytokine analysis
- Metabolomics
- Inflammatory mediators
- Histopathology
- Permeability
- Short chain fatty acid analysis

Study design

- **D-21**: Animal acclimation
- **D-14**: Dosing commences
- **D1 to D5**: MPTP administered i.p. at a dose of 20mg/kg, twice a day for five days
- **D21**: Termination & tissue collection

<table>
<thead>
<tr>
<th>Group</th>
<th># of Animals</th>
<th>Disease Induction</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>Saline</td>
<td>PBS</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>MPTP</td>
<td>PBS</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>MPTP</td>
<td>MRx0005</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>MPTP</td>
<td>MRx0029</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>MPTP</td>
<td>Peanut Oil</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>MPTP</td>
<td>7-Nitroindazole</td>
</tr>
</tbody>
</table>
ASSESSMENT OF DISEASE MODIFYING POTENTIAL IN THE MPTP MOUSE MODEL OF PD

TH+ cell numbers
- MRx0029 protected from loss of tyrosine hydrolase (TH)+ neurons in MPTP-induced brain lesions
- Neuroprotection is comparable to positive control 7-Nitroindazole (7-NI).

Dopamine and DOPAC Quantification
- MRx0005 protected from loss of striatal dopamine and DOPAC in MPTP-treated mice. The effect is similar to that of the positive control 7-NI.
Intestinal barrier function

- MRx0029 increased gene expression of tight junction proteins associated with gut barrier function (occludin and TJP)
- MRx0029 decreased gut permeability (as measured by FITC/Ussing chambers)

Neuroprotection

- MRx0029 completely rescued mitochondrial damage induced by MPP+

![Graphs and images showing gene expression and permeability changes](image-url)
MRx0005 AND MRx0029: DATA FROM CNS DISCOVERY PLATFORM

Neuroinflammation

- MRx0005 and MRx0029 reduce secretion of IL-6 after LPS treatment in glioblastoma astrocytes (U373) U373 cells and TNF-α treatment in microglia cells (HMC3)

- MRx0005 significantly decreased NF-κB activation in HEK-TLR4 cells treated with LPS and mutated α-syn proteins

- MRx0005 and MRx0029 decreased IL-6 secretion in U373 cells co-cultured with SH-SY5Y cells treated with αSyn WT and mutated proteins

IL-6 secretion in U373 cells

- Untreated
- LPS
- Media
- MRx0005
- MRx0029

IL-6 secretion in HMC3 cells

- Untreated
- TNF-α
- Media
- MRx0005
- MRx0029

NF-κB activation in HEK-TLR4 cells

- Untreated
- LPS
- Media
- MRx0005
- MRx0029

α-Synuclein induced inflammation in U373 Cells

- Untreated
- A53T
- A53T + MRx0005
- A53T + MRx0029
- E46K
- E46K + MRx0005
- E46K + MRx0029

© 4D pharma plc
Neurodevelopmental Disorders: Autism Spectrum Disorder
AUTISM SPECTRUM DISORDER (ASD) AND THE GUT MICROBIOME

Autism Spectrum Disorder
- Neurological development disorder: 1 in 160 children affected
- Cause is unknown: genetic, environmental, psychological, and neurological factors implicated
- ASD categorised in two ways: primary or secondary
- Wide range of symptoms: social interaction, language and communication, patterns of thoughts and physical behaviour

The gut microbiome in ASD
- Gastrointestinal symptoms are a comorbidity in ASD
- Altered gut microbial composition in ASD and in animal studies
- Germ-free mice exhibit hallmark autistic behaviours after undergoing gut microbiota transplantation from humans with ASD
- Administration of single bacterial strains can reverse ASD-related behavioural and gastrointestinal changes in humans and animals
- Children with ASD given microbiota transfer therapy show reductions in gastrointestinal symptoms and improvements in ASD behaviours
MicroRx® platform has identified a gut commensal bacterial strain which show strong potential for the treatment of neurodevelopmental disorders, such as ASD:

- MRx0006 – *Blautia stercoris*

MRx0006

- Modulates neuropeptide gene expression *in vitro* and *ex vivo*
- Anti-inflammatory effects *in vitro* and *in vivo*
- Decreased stereotyped behaviour, suggesting reversal of repetitive behaviours *in vivo*
- Increased social behaviour, reduced anhedonia
- Decreased anxiety-like behaviour in open-field test

LBP candidate progressing through development cycle
THE BTBR MOUSE MODEL - A GENETIC MODEL OF ASD

Model summary

- **Model**
 BTBR genetic mouse model of ASD

- **Animal Strain**
 Male BTBR mice (8 weeks of age)

- **Length of Model**
 11 weeks

Key readouts

- **Social**
 - Three chamber social test
 - Social transmission of food preference
 - Marble burying test
 - Grooming behaviour

- **Stereotyped**
 - Elevated plus maze
 - Open field test

- **Anxiety**
 - Forced swim test
 - Female urine sniffing test

- **Depression**
 - Novel object recognition

- **Cognition**
 - Ussing chambers
 - Carmine red

- **Ileum and Colon**
 - Cytokine profiling

- **Blood**

Study design

- **Week 0**
 Animal acclimation

- **Week 1-3**
 Dosing commences

- **Week 4**
 Marble burying and grooming test

- **Week 5**
 Three chamber social test and elevated plus maze
 Female urine sniffing test

- **Week 6**
 Open field, novel object recognition and social transmission of food preference

- **Week 7**
 Female urine sniffing test

- **Week 8**
 Elevated plus maze
 Carmine red

- **Week 9**
 Forced swim test

- **Week 10**
 Termination & tissue collection
THE MIA MOUSE MODEL - AN ENVIRONMENTAL MODEL OF ASD

Model summary

<table>
<thead>
<tr>
<th>Model</th>
<th>Maternal immune activation (MIA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal Strain</td>
<td>Male C57BL/6N mice (8 weeks of age)</td>
</tr>
<tr>
<td>Length of Model</td>
<td>10 weeks</td>
</tr>
</tbody>
</table>

Key readouts

- **Social**
 - Three chamber social test
 - Marble burying test
 - Grooming behaviour

- **Stereotyped**
 - Elevated plus maze
 - Open field test

- **Anxiety**
 - Forced swim test
 - Female urine sniffing test

- **Depression**
 - Novel object recognition

- **Cognition**
 - Ussing chambers
 - Carmine red

- **Blood**
 - Cytokine profiling

- **Ileum and Colon**
 - Novel object recognition

Study design

<table>
<thead>
<tr>
<th>Week 0</th>
<th>Animal acclimation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1-3</td>
<td>Three chamber social test and marble burying</td>
</tr>
<tr>
<td>Week 4</td>
<td>Open field, novel object recognition and elevated plus maze</td>
</tr>
<tr>
<td>Week 5</td>
<td>Female urine sniffing test and carmine red</td>
</tr>
<tr>
<td>Week 6</td>
<td>Grooming and social transmission of food preference</td>
</tr>
<tr>
<td>Week 7</td>
<td>Forc...</td>
</tr>
<tr>
<td>Week 8</td>
<td>Termination & tissue collection</td>
</tr>
</tbody>
</table>

C57BL/6J pregnant mice received a single intraperitoneal injection of the synthetic analogue of viral double-stranded RNA poly(I:C)
ATTENUATION OF AUTISTIC-LIKE BEHAVIOUR IN GENETIC AND ENVIRONMENTAL MOUSE MODELS OF ASD

Sociability
- MRx0006 increased the amount of time that animals spent interacting with a mouse over an object compared to vehicle

Reward-seeking behaviour
- MRx0006 increased the time spent sniffing urine vs. water
ATTENUATION OF AUTISTIC-LIKE BEHAVIOUR IN GENETIC AND ENVIRONMENTAL MOUSE MODELS OF ASD

Stereotyped behaviour

- MRx0006 decreased the time spent grooming in BTBR-animals compared to vehicle
- MRx0006 decreased the number of marbles buried in MIA-animals compared to vehicle

Depressive-like behaviour

- MRx0006 decreased the immobility time in MIA-animals compared to vehicle

Anxiety-like behaviour

- MRx0006 increased the time spent in the inner zone of the open field in BTBR-animals compared to vehicle
IN VITRO AND EX VIVO PITUITARY NEUROPEPTIDE EXPRESSION

Oxytocin and arginine vasopressin:
- Neuropeptides
- Synthesized in the hypothalamus
- Secreted from the posterior pituitary gland
- Implicated in complex behaviours such as:
 - Social behaviours
 - Trust
 - Romantic bonds
 - Aggression

Increases in oxytocin and arginine vasopressin may be linked to improvement in autistic-like behaviour:
- MRx0006 increased oxytocin and oxytocin receptor mRNA expression in mHypoA2-28 cells
- MRx0006 increased arginine vasopressin in the hypothalamus of BTBR mice

![Oxytocin and Arginine Vasopressin Molecules]

Pituitary neuropeptides and their receptors

<table>
<thead>
<tr>
<th>Peptide</th>
<th>mRNA Expression (normalized to β-actin)</th>
<th>Vehicle</th>
<th>MRx0006</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxytocin Peptide</td>
<td>3.0 ± 0.5</td>
<td>0</td>
<td>3.5 ± 0.3</td>
</tr>
<tr>
<td>Arginine Vasopressin Peptide</td>
<td>1.5 ± 0.2</td>
<td>0</td>
<td>2.0 ± 0.4</td>
</tr>
</tbody>
</table>

Oxytocin Peptide in mHypoA2-28 cells

Arginine Vasopressin Peptide in Hippocampus of BTBR mice
Summary
PROGRESS FROM CNS DISCOVERY PLATFORM

• Functional screening platform MicroRx® designed to target different aspects of neurological disorders
• Discovered human gut commensal bacteria that can modulate relevant cell types and pathways via the gut-brain axis
• Demonstrated efficacy in a variety of pre-clinical models

Rational selection of bacterial strains from proprietary culture collection affecting CNS disorders

Targeted *in vitro* screening for mechanisms involved in gut-brain axis communication can identify novel live biotherapeutic candidates

The strains have complementary characteristics and distinct mechanisms of action

All strains have shown efficacy in an industry-standard animal models

4D is preparing plans to quickly generate clinically-relevant inpatient data
developing science delivering therapies