Live Biotherapeutics to Target the Gut-Brain Axis
DISCLAIMER

This document, which is personal to the recipient and has also been prepared by, and is the sole responsibility of, 4D pharma plc (the “Company”), comprises these presentation slides (the “Slides”) for the sole use at a presentation concerning the Company.

The information in these Slides does not constitute or form part of an admission document, listing particulars or prospectus relating to the Company or any subsidiary of the Company (together the “Group”), does not constitute an offer or invitation to purchase or subscribe for any securities of the Company, and should not be relied upon in connection with a decision to purchase or subscribe for any such securities. The Slides and the accompanying verbal presentation do not constitute a recommendation regarding any decision to sell or purchase securities in the Company.

The Slides and the accompanying verbal presentation are confidential, and the Slides are being supplied to you solely for your information and, unless otherwise agreed in writing by the Company, may not be reproduced, distributed or otherwise disclosed to any other person, or published (in whole or in part) for any purpose. No reliance may be placed for any purpose whatsoever on the information contained in the Slides and the accompanying verbal presentation or the completeness or accuracy of such information. No representation or warranty, express or implied, is given by or on behalf of the Company or its shareholders, directors, officers or employees, or any other person as to the accuracy or completeness of the information or opinions contained in the Slides and the accompanying verbal presentation, and no liability is accepted for any such information or opinions (including in the case of negligence, but excluding any liability for fraud).

The Slides contain forward-looking statements, which relate (among other things) to the Group’s proposed strategy, plans and objectives. By its very nature, such forward-looking information requires the Group to make assumptions that may or may not materialise. Such forward-looking statements may be price-sensitive and involve known and unknown risks, uncertainties and other important factors beyond the control of the Group that could cause the actual performance or achievements of the Group to be materially different from such forward-looking statements. Accordingly, you should not rely on any forward-looking statements, and the Group accepts no obligation to disseminate any updates or revisions to such forward-looking statements.

This presentation has not been verified and is subject to further changes and amendments. The Slides and their contents are directed only at persons who fall within the exemptions contained in Articles 19 and 49 of the Financial Services and Markets Act 2000 (Financial Promotion) Order 2005 (such as persons who are authorised or exempt persons within the meaning of the Financial Services and Markets Act 2000, and certain other persons having professional experience relating to investments, high net worth companies, unincorporated associations or partnerships and the trustees of high value trusts) and persons to whom distribution may otherwise lawfully be made. Any investment, investment activity or controlled activity to which the Slides relate is available only to such persons and will be engaged in only with such persons.

Persons of any other description, including those that do not have professional experience in matters relating to investments, should not rely or act upon the Slides. The Slides should not be distributed, published, reproduced or otherwise made available in whole or in part by recipients to any other person and, in particular, should not be distributed to persons with an address in the United States of America, Australia, the Republic of South Africa, the Republic of Ireland, Japan or Canada, or in any other country outside the United Kingdom where such distribution may lead to a breach of any legal or regulatory requirement. No securities commission or similar authority in Canada has in any way passed on the merits of the Company’s shares, and any representation to the contrary is an offence. No document in relation to the Company’s shares has been, or will be, lodged with, or registered by, The Australian Securities and Investments Commission, and no registration statement has been, or will be, filed with the Japanese Ministry of Finance in relation to the Company’s shares. Accordingly, subject to certain exceptions, the Company’s shares may not, directly or indirectly, be offered or sold within Canada, Australia, Japan, South Africa or the Republic of Ireland or offered or sold to a resident of Canada, Australia, Japan, South Africa or the Republic of Ireland. The Company’s shares have not been, and will not be, registered under the United States Securities Act of 1933 (as amended, the “US Securities Act”), or with any securities regulatory authority of any state or other jurisdiction of the United States, and may not be offered or sold within the United States or to, or for the account or benefit of, any US Person as that term is defined in Regulation S under the US Securities Act. The Company has not been registered and will not register under the United States Investment Company Act of 1940, as amended.

By attending the presentation and/or accepting this document you agree to be bound by the foregoing limitations and restrictions and, in particular, will be taken to have represented, warranted and undertaken that you have read and agree to comply with the contents of this notice.

© 4D pharma plc
AN INTEGRATED, END-TO-END MICROBIOME PLAYER

4D pharma is a leader in the development of single strain Live Biotherapeutics, a novel class of drug derived from the human gut microbiome.

- **Platform & Research**
 - MicroRx® platform - focus on functionality
 - Research collaboration with MSD in vaccines
 - World-leading IP estate

- **Development & Manufacturing**
 - Unique end-to-end capability and expertise
 - cGMP certified
 - Production for 4 clinical trials in parallel

- **Clinical Development**
 - 4 clinical-stage candidates across multiple TAs
 - Clinical collaboration with MSD in I-O
 - Positive early signals for MRx0518 + Keytruda
WHAT ARE LIVE BIOOTHERAPEUTICS?

Our LBPs are:

• Single-strains of commensal bacteria
• Isolated from healthy human donors
• Encapsulated for oral delivery; formulated for targeted delivery to the intestines
• Highly favourable toxicity/side-effect profile
• Accelerated preclinical development and early-in patient data
Evidence for the importance of the gut-brain axis has been shown across numerous studies, highlighting the crucial role of the gut and in particular the microbiome, on central nervous system processes:
THERAPEUTIC TARGETS WITHIN THE GUT-BRAIN AXIS

• High unmet need for new therapeutic strategies for brain-related conditions

• Current therapies:
 o Target symptoms, not disease-modifying
 o Side effects, low response rate

• Newer therapies:
 o Target mechanism, disease-modifying
 o High clinical failure rate
 o Often limited to one brain mechanism

• MicroRx® screening platform targets:
 o Multiple mechanisms of central nervous system (CNS) pathology
 o Uses overlap, comorbidities, overarching mechanisms
 o Informs on appropriate preclinical models and biomarkers

Neurons, microglia, astrocytes & reporter cell lines

Neuroinflammation & neurodegeneration

MicroRx® bacterial strains

Primary & secondary metabolite analysis

Intestinal epithelial cell models

Inflammation, gut permeability, & disease-specific markers
Screening using MicroRx®
CENTRAL NERVOUS SYSTEM SCREENING PLATFORM

Neuronal
- Hypothalamus
-CRF
- Pituitary
- Brainstem
- Sympathetic nerves
- Baroreceptor

Peripheral
- Adrenal cortex
- HPA axis
- Neurotransmitters (NT), SCFAs and cytokines
- SCFA levels change
- Bacterial metabolite levels change
- LPS

Gastrointestinal
- Immune cell recruitment
- Bacterial translocation
- Enterocytes
- Goblet cell
- Paneth cell
- M cell
- Gut microbiota

Commensal effector molecules
- Neuroprotection
- Neuroinflammation
- Neurodifferentiation
- Protein misfolding and aggregation

Commensal signalling molecules
- Neurotransmitters
- Anti-inflammatory mediators
- Antioxidants
- Polyphenols

Commensal bacterial strains
- Gut barrier function
- Gut dysbiosis
- Short-chain fatty acids (SCFAs)
- Protein misfolding and aggregation

Increased intestinal permeability and gut barrier dysfunction ("leaky gut")
Gut microbiota dysbiosis
Inflammation of the intestinal mucosa
Systemic inflammation due to bloodstream metabolites and molecules
Disruption in the blood-brain barrier
Inflammation in the brain, meninges or spinal cord
Protein aggregation, mitochondrial dysfunction, oxidative stress and neurodegeneration
Stress activates the hypothalamic-pituitary-adrenal (HPA) axis and enhances the secretion of glucocorticoids
Microglia activate an inflammatory response, leading to progressive damage of neurons
SCREENING OVERVIEW

Neuronal
- Neuroinflammation is a key player in both neuroprotective and neuropathological processes
- Neurodegeneration is associated with genetic mutations and exposure to certain stimuli

Peripheral
- Circulating pro-inflammatory cytokines are linked to neuronal injury
- Imbalances to neurotransmitter systems have been associated with many CNS disorders

Gastrointestinal
- Increased epithelial permeability is linked to systemic circulation of pro-inflammatory molecules
- Short chain fatty acids (SCFAs) are important in neuro-modulation

MicroRx® identifies LBPs:
- Which have neuroprotective and neuronal anti-inflammatory effects
- With anti-inflammatory effects which are linked to specific diseases such as Parkinson’s disease

MicroRx® identifies LBPs:
- With broad anti-inflammatory effects relevant to attenuation of systemic inflammation
- Which produce specific neurotransmitters relevant to target neurodegenerative disorders

MicroRx® identifies LBPs:
- Which increase gut barrier function and reduce translocation of microbiome-derived pro-inflammatory mediators
- With unique SCFA profiles; including the production of SCFAs known to affect disease-specific cellular processes
Neurodegeneration:
Parkinson’s Disease –
MRx0005 & MRx0029
PARKINSON’S DISEASE (PD)

• Most common movement disorder
 o Second most common neurodegenerative disorder
 o ~ 10M people worldwide affected
 o 1.5 times men > women
 o Cause unknown: genetic and environmental factors implicated

• Two forms of PD:
 o Idiopathic:
 ▪ Most common (85 – 90% of PD cases)
 ▪ No known cause
 ▪ Age of onset: ~ 65 years
 o Familial:
 ▪ 10 – 15% of PD cases
 ▪ Genetic mutation in various genes (SNCA, LRRK2, etc.)
 ▪ “Young onset”: before 50 years

• Deterioration of motor function due to loss of dopamine-producing brain cells in the motor region of the brain

• Linked to accumulation or dysfunction of key protein:
 o Misfolded α-synuclein is part of abnormal protein aggregate found in Lewy bodies
NEURODEGENERATION: MRx0005 & MRx0029 IN VITRO DATA

Gut barrier function

Oxidative stress and neuroprotection

Neuroinflammation associated with α-synuclein

Neuronal differentiation

α-syn induced inflammation in U373 cells

MPP+ induced cytotoxicity in SH-SY5Y cells

DAT/SLC6A3
ASSESSMENT OF DISEASE MODIFYING POTENTIAL IN THE MPTP MOUSE MODEL OF PARKINSON’S DISEASE

Model summary

Model	1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine (MPTP)-Induced Parkinsonian Syndrome
Disease Induction	MPTP administered i.p. at a dose of 20mg/kg, twice a day for five days
Animal Strain	Male C57BL/6 mice (7 weeks of age)
Positive Control	7-nitroindazole (50 mg/kg; i.p.; b.i.d.)
Length of Model	35 days (14 days pre-treatment + 21 days in vivo)

Treatment groups

<table>
<thead>
<tr>
<th>Group</th>
<th># of Animals</th>
<th>Disease Induction</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>Saline</td>
<td>PBS</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>MPTP</td>
<td>PBS</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>MPTP</td>
<td>MRx0005</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>MPTP</td>
<td>MRx0029</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>MPTP</td>
<td>Peanut Oil</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>MPTP</td>
<td>7-Nitroindazole</td>
</tr>
</tbody>
</table>

Key readouts

- DA transporter levels
- Dopamine and metabolites
- Quantification of dopaminergic neurons
- 16S microbiome analysis
- Cytokine profiling
- Metabolomics
- Inflammatory mediators
- Histopathology
- Permeability
- Short chain fatty acid analysis

Study design

- D-21: Animal acclimation
- D-14: Dosing commences
- D1 to D5: MPTP administered i.p. at a dose of 20mg/kg, twice a day for five days
- D21: Termination & tissue collection
- D-15: Faecal pellet & blood collection
- D-4: Faecal pellet & blood collection
- D19: Faecal pellet & blood collection

© 4D pharma plc
ASSESSMENT OF THE DISEASE MODIFYING POTENTIAL IN THE MPTP MOUSE MODEL OF PARKINSON’S DISEASE

TH+ cell numbers
- MRx0029 protected from loss of tyrosine hydrolase (TH)+ neurons in MPTP-induced brain lesions
- Neuroprotection is comparable to positive control 7-Nitroindazole (7-NI).

Dopamine & DOPAC quantification
- MRx0005 protected from loss of striatal dopamine and DOPAC in MPTP-treated mice. The effect is similar to that of the positive control 7-NI.
AUTISM SPECTRUM DISORDER (ASD)

- Neurological development disorder
 - 1 in 160 children affected
 - 4 times boys > girls
 - Cause is unknown: genetic, environmental, psychological, and neurological factors implicated

- ASD categorised in two ways:
 - Primary/Idiopathic:
 - Most common (90% of ASD cases)
 - No underlying medical condition
 - Secondary:
 - 10% of ASD cases
 - Underlying medical condition

- Wide range of symptoms:
 - Social interaction
 - Language and communication
 - Patterns of thoughts and physical behaviour
 - Gastrointestinal complications
ASSESSMENT OF LIVE BIOOTHERAPEUTICS IN A GENETIC MODEL OF AUTISM SPECTRUM DISORDER – THE BTBR MOUSE

Model summary

- **Model**: BTBR genetic mouse model of ASD
- **Animal Strain**: Male BTBR mice (8 weeks of age)
- **Length of Model**: 11 weeks

Key readouts

- **Social**
 - Three chamber social test
 - Social transmission of food preference
 - Marble burying test
 - Grooming behaviour
- **Stereotyped**
 - Elevated plus maze
 - Open field test
- **Anxiety**
 - Forced swim test
 - Female urine sniffing test
- **Depression**
 - Novel object recognition
- **Cognition**
 - Social transmission of food preference
- **Blood**
 - Carmine red
 - Ileum and Colon
- **Ussing chambers**
- **Cytokine profiling**

Study design

- **Week 0**: Animal acclimation
- **Week 1-3**: Dosing commences
- **Week 5**: Three chamber social test and elevated plus maze
- **Week 6**: Female urine sniffing test
- **Week 7**: Forced swim test
- **Week 8**: Forced swim test
- **Week 9**: Termination & tissue collection
ASSESSMENT OF LIVE BIOThERAPEUTICS IN AN ENVIRONMENTAL MODEL OF AUTISM SPECTRUM DISORDER – MIA

Model summary

<table>
<thead>
<tr>
<th>Model</th>
<th>MIA environmental mouse model of ASD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal Strain</td>
<td>Male C57BL/6N mice (8 weeks of age)</td>
</tr>
<tr>
<td>Length of Model</td>
<td>10 weeks</td>
</tr>
</tbody>
</table>

C57BL/6J pregnant mice received a single intraperitoneal injection of the synthetic analogue of viral double-stranded RNA poly(I:C)

Key readouts

- Three chamber social test
- Social transmission of food preference
- Marble burying test
- Grooming behaviour
- Elevated plus maze
- Open field test
- Forced swim test
- Female urine sniffing test
- Novel object recognition
- Three chamber social test
- Social transmission of food preference
- Marble burying test
- Grooming behaviour
- Elevated plus maze
- Open field test
- Forced swim test
- Female urine sniffing test
- Novel object recognition
- Three chamber social test
- Social transmission of food preference
- Marble burying test
- Grooming behaviour
- Elevated plus maze
- Open field test
- Forced swim test
- Female urine sniffing test
- Novel object recognition

Study design

- Week 0: Animal acclimation
- Week 1-3: Dosing commences
- Week 4: Open field, novel object recognition and elevated plus maze
- Week 5: Three chamber social test and marble burying
- Week 6: Grooming and social transmission of food preference
- Week 7: Female urine sniffing test and carmine red
- Week 8: Forced swim test
- Week 9: Termination & tissue collection

© 4D pharma plc
ATTENUATION OF AUTISTIC-LIKE BEHAVIOUR IN GENETIC AND ENVIRONMENTAL MOUSE MODELS OF ASD

Sociability

- MRx0006 increased the amount of time that animals spent interacting with a mouse over an object compared to vehicle.

Reward-seeking behaviour

- MRx0006 increased the time spent sniffing urine vs. water.
ATTENUATION OF AUTISTIC-LIKE BEHAVIOUR IN GENETIC AND ENVIRONMENTAL MOUSE MODELS OF ASD

Anxiety-like behaviour
- MRx0006 increased the time spent in the inner zone of the open field in BTBR-animals compared to vehicle

Stereotyped behaviour
- MRx0006 decreased the time spent grooming in BTBR-animals compared to vehicle
- MRx0006 decreased the number of marbles buried in MIA-animals compared to vehicle

Depressive-like behaviour
- MRx0006 decreased the immobility time in MIA-animals compared to vehicle
Neuroinflammatory Disorders:
Multiple Sclerosis:
MRx0002 & MRx0005
MULTIPLE SCLEROSIS (MS)

• Progressive, immune-mediated disorder
 o Demyelinating disease
 o ~ 2.1M people worldwide affected
 o 2-3 times women > men
 o Cause is unknown: genetic and environmental factors implicated

• Four main types of MS:
 o Relapsing-remitting MS (RRMS):
 ▪ Most common (85% of MS cases)
 ▪ Temporary periods of relapses or flare-ups
 o Secondary-progressive MS (SPMS):
 ▪ Most people with RRMS transition to SPMS
 ▪ Symptoms worsen steadily over time with/without relapses/remissions
 o Primary-progressive MS (PPMS):
 ▪ 10% of MS cases
 ▪ Slow worsening symptoms with no relapses/remissions
 o Progressive-relapsing MS:
 ▪ Rare (5% of MS cases)
 ▪ Steadily worsening, acute relapses but no remissions
ASSESSMENT OF THE EFFICACY OF LIVE BIOOTHERAPEUTIC PRODUCTS IN AN EAE MODEL OF MS

Model summary

<table>
<thead>
<tr>
<th>Model</th>
<th>Experimental autoimmune encephalomyelitis (EAE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disease Induction</td>
<td>Administration of MOG peptide in CFA followed by pertussis toxin</td>
</tr>
<tr>
<td>Animal Strain</td>
<td>Female C57BL/6NTac mice (8 weeks of age)</td>
</tr>
<tr>
<td>Positive Control</td>
<td>Dexamethasone (3 mg/kg; i.p.; t.i.d.)</td>
</tr>
<tr>
<td>Length of Model</td>
<td>42 days (14 days pre-treatment + 28 days in vivo)</td>
</tr>
</tbody>
</table>

Disease Induction Administration of MOG peptide in CFA followed by pertussis toxin
Animal Strain Female C57BL/6NTac mice (8 weeks of age)
Positive Control Dexamethasone (3 mg/kg; i.p.; t.i.d.)
Length of Model 42 days (14 days pre-treatment + 28 days in vivo)

Key readouts

- Clinical scores
- Disease incidence
- Inflammatory foci
- Immune cell profiling
- 16S microbiome analysis
- Cytokine analysis
- Inflammatory mediators
- Histopathology
- Permeability
- Short chain fatty acid analysis

Scores Spinal Cord Spleen Faecal Pellets Blood Gut Caecum

Study design

D-21 Animal acclimation
D-14 Dosing commences
D0 Administration of MOG₃₅₋₅₅ peptide in CFA via s.c. injection followed by i.p. injection of pertussis toxin
D1 Administration of pertussis toxin via i.p. injection
D28 Termination & tissue collection
D28 Faecal pellet & blood collection

© 4D pharma plc
ASSESSMENT OF THE EFFICACY OF LIVE BIOThERAPEUTIC PRODUCTS IN AN EAE MODEL OF MS

Clinical score

- MRx0002 and MRx0005 reduced clinical score vs untreated or vehicle
- Reduction in clinical score was comparable to positive control Dexamethasone

Disease incidence

- MRx0002 and MRx0005 reduced disease incidence
- Reduction in disease incidence was comparable to positive control Dexamethasone
ASSESSMENT OF THE EFFICACY OF LIVE BIOTHERAPEUTIC PRODUCTS IN AN EAE MODEL OF MS

Inflammatory foci

- MRx0002 and MRx0005 significantly reduced spinal cord inflammation when compared to the untreated control group.

Immune cell profiling

- MRx0002 showed a slight expansion of regulatory T-cells in splenocytes.
LBPs for Neurological Diseases

Summary
Neurodegeneration (PD)
- Decreased IL-6 secretion in glioblastoma cells; and co-culture of glioblastoma and differentiated neuroblastoma cells
- Protected several brain-derived cell types from oxidative stress
- Partial protection from MPP+ induced cytotoxicity in differentiated neuroblastoma cells
- Protected against MPTP-induced losses in striatal DOPAC in vivo

Autism Spectrum Disorder
- Modulates gene expression of oxytocin and its receptors in hypothalamic cell lines
- Decreased repetitive behaviours in vivo
- Increased social behaviour / reduced anhedonia
- Decreased anxiety-like behaviour

Multiple Sclerosis
- Strong reduction in clinical scores in vivo
- Complete prevention of disease incidence in vivo
- Significantly reduced inflammation in the spinal cord
- Expansion of Tregs in splenocytes
- Slight reduction in dendritic cell sub-populations
PROGRESS FROM CNS PLATFORM

- Functional screening platform MicroRx® designed to target different aspects of neurological disorders
- Discovered four human gut commensal bacteria that can modulate relevant cell types and pathways via the gut-brain axis
- Demonstrated efficacy in a variety of preclinical models

Rational selection of bacterial strains from proprietary culture collection affecting CNS disorders

Targeted *in vitro* screening for mechanisms involved in gut-brain axis communication can identify novel live biotherapeutic candidates

The strains have complementary characteristics and mechanisms of action

All strains have shown efficacy in an industry-standard animal models

4D is preparing plans to quickly generate clinically-relevant in-patient data
developing science
delivering therapies