Developing Live Biotherapeutics
to target Immuno-Oncology

Imke Mulder
4D pharma PLC
Research Director

1st Microbiome Movement – Oncology Response
July 22-24 2019, Boston, MA
This document, which is personal to the recipient and has also been prepared by, and is the sole responsibility of, 4D pharma plc (the “Company”), comprises these presentation slides (the “Slides”) for the sole use at a presentation concerning the Company.

The information in these Slides does not constitute or form part of an admission document, listing particulars or prospectus relating to the Company or any subsidiary of the Company (together the “Group”), does not constitute an offer or invitation to purchase or subscribe for any securities of the Company, and should not be relied upon in connection with a decision to purchase or subscribe for any such securities. The Slides and the accompanying verbal presentation do not constitute a recommendation regarding any decision to sell or purchase securities in the Company.

The Slides and the accompanying verbal presentation are confidential, and the Slides are being supplied to you solely for your information and, unless otherwise agreed in writing by the Company, may not be reproduced, distributed or otherwise disclosed to any other person, or published (in whole or in part) for any purpose. No reliance may be placed for any purpose whatsoever on the information contained in the Slides and the accompanying verbal presentation or the completeness or accuracy of such information. No representation or warranty, express or implied, is given by or on behalf of the Company or its shareholders, directors, officers, employees, or any other person as to the accuracy or completeness of the information or opinions contained in the Slides and the accompanying verbal presentation, and no liability is accepted for any such information or opinions (including in the case of negligence, but excluding any liability for fraud).

The Slides contain forward-looking statements, which relate (among other things) to the Group’s proposed strategy, plans and objectives. By its very nature, such forward-looking information requires the Group to make assumptions that may or may not materialise. Such forward-looking statements may be price-sensitive and involve known and unknown risks, uncertainties and other important factors beyond the control of the Group that could cause the actual performance or achievements of the Group to be materially different from such forward-looking statements. Accordingly, you should not rely on any forward-looking statements, and the Group accepts no obligation to disseminate any updates or revisions to such forward-looking statements.

This presentation has not been verified and is subject to further changes and amendments. The Slides and their contents are directed only at persons who fall within the exemptions contained in Articles 19 and 49 of the Financial Services and Markets Act 2000 (Financial Promotion) Order 2005 (such as persons who are authorised or exempt persons within the meaning of the Financial Services and Markets Act 2000, and certain other persons having professional experience relating to investments, high net worth companies, unincorporated associations or partnerships and the trustees of high value trusts) and persons to whom distribution may otherwise lawfully be made. Any investment, investment activity or controlled activity to which the Slides relate is available only to such persons and will be engaged in only with such persons.

Persons of any other description, including those that do not have professional experience in matters relating to investments, should not rely or act upon the Slides. The Slides should not be distributed, published, reproduced or otherwise made available in whole or in part by recipients to any other person and, in particular, should not be distributed to persons with an address in the United States of America, Australia, the Republic of South Africa, the Republic of Ireland, Japan or Canada, or in any other country outside the United Kingdom where such distribution may lead to a breach of any legal or regulatory requirement. No securities commission or similar authority in Canada has in any way passed on the merits of the Company’s shares, and any representation to the contrary is an offence. No document in relation to the Company’s shares has been, or will be, lodged with, or registered by, The Australian Securities and Investments Commission, and no registration statement has been, or will be, filed with the Japanese Ministry of Finance in relation to the Company’s shares. Accordingly, subject to certain exceptions, the Company’s shares may not, directly or indirectly, be offered or sold within Canada, Australia, Japan, South Africa or the Republic of Ireland or offered or sold to a resident of Canada, Australia, Japan, South Africa or the Republic of Ireland. The Company’s shares have not been, and will not be, registered under the United States Securities Act of 1933 (as amended, the “US Securities Act”), or with any securities regulatory authority of any state or other jurisdiction of the United States, and may not be offered or sold within the United States or to, or for the account or benefit of, any US Person as that term is defined in Regulation S under the US Securities Act. The Company has not been registered and will not register under the United States Investment Company Act of 1940, as amended.

By attending the presentation and/or accepting this document you agree to be bound by the foregoing limitations and restrictions and, in particular, will be taken to have represented, warranted and undertaken that you have read and agree to comply with the contents of this notice.
Live Biotherapeutics

- Single-strain commensal bacteria encapsulated for oral delivery
- Highly favourable toxicity/side-effect profile
- Accelerated preclinical development and early in-patient data

Industry leader with differentiated approach

- 4D pharma is an integrated platform & product company
- Mechanistic approach focused on function: targeting and addressing known disease pathways via effector molecules
- Sector-leading IP estate; more than 550 granted patents
- Multiple value inflection points; proof-of-concept clinical data on the horizon

Breakthrough class of medicines with potential to change the way we treat disease
FOCUS ON FUNCTIONALITY: MicroRx® PLATFORM

Isolation
- Significant culturomics expertise
- Broad coverage and diversity
- Previously unisolated organisms

Product development
- Integrated scale-up and optimization
- Strain-specific fermentation and formulation

Strain engineering
- Gene disruption/deletion
- Recombinant protein expression
- Anti-sense RNA gene silencing
- CRISPR-Cas9 gene editing

Host-response assays
- Targeted immune screening approaches
- Suite of host cells, spheroids/organoids
- Host receptors/MAMPs

Genome mining
- WGS and genome mining
- Comparative genomics and bioinformatics

Metabolomics
- Metabolomic fractionation
- Exhaustive profiling of effector molecules

Proteomics
- Cell surface shaving (surfaceome)
- Characterisation of secretome
- Targeted and driven by host signalling data
Successful immunotherapy requires two components:
- Activation of anti-tumour immunity
- Reversal of immunosuppression

Microbiome-derived LBPs could target more than one of the steps of the cancer-immune cycle.
SCREENING FOR IMMUNOSTIMULATORY LBP CANDIDATES

The MicroRx® platform employs a multi-faceted screening approach using combined in vitro and in vivo methods to identify strains with potent immunostimulatory profiles.

- Increase CD8⁺ and CD4⁺ T cell differentiation, reduce Treg differentiation
- Activation of antigen-presenting cells
- Induction of specific cytokine signatures across multiple human cell lines
- Translation to in vivo immune cell populations, systemic and tissue-specific
- Identification of effector molecules – metabolomics, genome mining, genetic manipulation, phenotypic assays
- Focus on function – e.g. LBPs with potent MAMP-signalling properties, LBPs with specific metabolic signatures affecting HDAC inhibition
Programme:
MRx0518 in Immuno-Oncology
MRx0518
• Gram-positive, motile, anaerobic bacterium of the *Enterococcus* genus
• Selected for immunostimulatory host response profile, relevant for immunotherapy

Efficacy in vivo
• Monotherapy: reduction of tumour volume in different syngeneic cancer models
• Combination: boosts efficacy of checkpoint inhibition

Mechanism of action
• Increases tumour CD8+/Treg ratio
• Immune stimulation through action of bacterial flagellin on TLR5

Ongoing clinical studies
• Phase Ib neoadjuvant biomarker study (UK)
• Phase I/II combination study with anti-PD-1 (US)
MRx0518 MONOTHERAPY IN SYNGENEIC TUMOUR MODELS

MRx0518 was tested across a range of different tumour models with varying degrees of immunogenicity.

### Cell line	Cancer type	Mouse strain	SC/OT	ICI sensitivity
EMT6 | Breast carcinoma | BALB/C | SC | T/C <42% 42%<T/C<80% T/C >80%
RENCA | Kidney adenocarcinoma | BALB/C | SC | -
LLC1 | Lung carcinoma | C57Bl/6 | SC | CTLA-4 PD-1 PD-L1

Table 1: Tumour models

- **Tumour Volume**: Analysis of tumour growth over time.
- **Cytokine analysis**: Measurement of cytokine levels in the blood.
- **Transcriptomics (NanoString)**: Gene expression profiling.
- **Histopathology**: Examination of tissue samples.
- **Metabolomics**: Study of small molecules in the gut.
- **Inflammatory mediators**: Analysis of inflammatory markers in the blood.
- **Histopathology / immunohistochemistry**: Examination of tissue samples with staining.

Figures

- **Tumour**: Graph showing mean tumour volume over days post-tumour induction.
- **Microbiome**: Microbial composition analysis.
- **Blood**: Cytokine analysis.
- **Gut**: Transcriptomics analysis.

© 4D pharma plc

Yu et al., 2018
MRx0518 MONOTHERAPY INHIBITS TUMOUR GROWTH IN DIFFERENT CANCER TYPES

MRx0518 showed efficacy in syngeneic tumour models of breast, kidney and lung cancer

<table>
<thead>
<tr>
<th>Group</th>
<th>Tumour volume (Mean±sem)</th>
<th>T/C (%) at D28 vs Untreated</th>
<th>T/C (%) at D28 vs Vehicle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated</td>
<td>1010.88 ± 282.98</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vehicle</td>
<td>1134.43 ± 362.03</td>
<td>106.37</td>
<td>-</td>
</tr>
<tr>
<td>MRx0518</td>
<td>572.93 ± 77.61</td>
<td>55.29</td>
<td>51.97</td>
</tr>
<tr>
<td>Anti-CTLA-4</td>
<td>14.33 ± 8.57</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group</th>
<th>Tumour volume (Mean±sem)</th>
<th>T/C (%) at D22 vs Untreated</th>
<th>T/C (%) at D22 vs Vehicle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated</td>
<td>483.36 ± 70.56</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vehicle</td>
<td>356.93 ± 78.86</td>
<td>49.77</td>
<td>-</td>
</tr>
<tr>
<td>MRx0518</td>
<td>243.29 ± 50.53</td>
<td>40.06</td>
<td>80.49</td>
</tr>
<tr>
<td>Anti-CTLA-4 + Anti-PD-L1</td>
<td>41.79 ± 28.52</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

© 4D pharma plc
The effects of MRx0518 on immune cell types across different tissue sites were investigated

- Increased NK cells, T cells and cytotoxic cells in the tumour
- Increases NK cells, T cells and cytotoxic cells in the ascending colon
- Few changes in ileal immune populations
MRx0518 SELECTION – STRONG IMMUNOSTIMULATORY PROFILE IN VITRO

MRx0518 induces a strong innate immune response in vitro

- MRx0518 increases the production of a cytokine/chemokine signature that includes IL-8, IFN-γ, IL-6, TNF-α, IL-1β, IL-23, CCL20, CXCL1, CXCL3, CXCL9 and CXCL10
MRx0518 induces a strong CD4\(^+\) and CD8\(^+\) adaptive immune response \textit{in vitro}

PBMC co-culture assay

<table>
<thead>
<tr>
<th></th>
<th>CD8(^+) cells</th>
<th>CD4(^+) cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD3/CD28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% CD8(^+)CD25(^+) (of CD8(^+) cells)</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>% IFN(^\gamma) (of CD8(^+) cells)</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>% CD4(^+) (of CD4(^+) cells)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% IFN(^\gamma) (of CD4(^+) cells)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untreated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MRx0518</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Treg differentiation assay

<table>
<thead>
<tr>
<th></th>
<th>CD8(^+) FoxP3(^+) (of CD4(^+) cell population)</th>
<th>CD25(^+)IL-10(^+) (of CD4(^+) cell population)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD3/CD28, IL-2 and TGF-(\beta)</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
<tr>
<td>% CD8(^+) FoxP3(^+) (of CD4(^+) cell population)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% CD25(^+)IL-10(^+) (of CD4(^+) cell population)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untreated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MRx0518</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- MRx0518 increases % CD8\(^+\) T cells and activated IFN\(^+\) CD8\(^+\) T cells
- MRx0518 increases % CD4\(^+\) T cells and activated IFN\(^+\) Th1 CD4\(^+\)T cells
- MRx0518 reduces differentiation of CD4\(^+\)CD25\(^+\)FoxP3\(^+\) Tregs
MRx0518 UPREGULATES INNATE IMMUNE CELL SUBSETS IN MICE

MRx0518 induces non-conventional T cell subsets in unchallenged mice

Systemic immune cells specifically upregulated by MRx0518

- Mice dosed with MRx0518 show increased frequency of systemic immune cell populations associated with anti-tumour immunity
Mechanism of Action –
Bacterial Effector Molecules
Identification of immunostimulatory factors of LBPs: integrated host-microbe approach

Host response assays
- Which host receptor(s) and pathways are stimulated?
- Which immune populations/mediators are induced and in which direction?
- What is the active bacterial fraction(s)?

Genome mining
- Whole genome sequencing and mining
- Transcriptional analysis of effector genes
- Comparative genomics
- ID potential MAMPs

Molecular tools
- Antigen over-expression
- Gene inactivation

Surfacome/Secretome
- Targets of interest related to host signalling

Immunomodulatory molecule ID
- Cell wall
- Cell-surface shaving
- CFS
- Surface Proteins
- Secreted Proteins

Discovery-based target indicators
- Genus/species of interest
- Immunomodulatory molecule ID

• Which host receptor(s) and pathways are stimulated?
• Which immune populations/mediators are induced and in which direction?
• What is the active bacterial fraction(s)?
IMMUNOSTIMULATORY FACTORS OF MRx0518

Immunostimulatory factors of MRx0518: identification of potential MAMPs

Whole genome sequencing and genome mining

- 3.13 Mb chromosome
- 3 plasmids (3-43 kb)
- 3,035 coding genes
- 2 predicted phage regions

Identification of potential MAMPs and host-interaction factors:

- Flagellin
- Adhesins
- Bile salt hydrolase

Surfacome/Secretome analysis

Relative abundance (PSM)	Role in host-interactions
Flagellin | 16 57 | Immunostimulation, adhesion to mucin
Heat-shock protein GroEL | 39 25 | Binding to mucin
GAPDH | 9 5 | Binding to mucin
Enolase | 63 52 | Binding to human plasminogen
Chaperone protein DnaK | 39 34 | Binding to human plasminogen
Eff-Tu | 143 38 | Binding to mucin, IL-8 stimulation
Choloylglycine hydrolase | 8 3 | Bile resistance, binding to plasminogen

Other molecules

- Secreted ATP
- Extracellular DNA
MRx0518 – IDENTIFICATION OF IMMUNOSTIMULATORY EFFECTORS

Activation of NF-κB

MRx0518 supernatant strongly activates NF-κB

- NF-κB activation is abolished by trypsin treatment

Activation of TLR5

MRx0518 supernatant strongly activates TLR5

- TLR5 activation is abolished by trypsin treatment

Activation of TLR9

MRx0518 supernatant strongly activates TLR9

- TLR9 activation is abolished by DNase and trypsin treatment
FLAGELLIN IS RESPONSIBLE FOR MRx0518 TLR5 ACTIVATION AND IL-8 PRODUCTION

Overall strategy

MRx0518 flagellin activates TLR5 and induces IL-8 secretion

TLR5 activation in response to SN
- Little to no TLR5 activation or IL-8 production when flagellin gene is knocked out
- MRx0518 induces higher TLR5 activation and IL-8 induction than the reference strain
- MRx518 stimulatory effects abolished by flagellin inactivation

Dose-response with recombinant flagellins
- Purified recombinant flagellins activate TLR5
- MRx0518 flagellin is more potent than the reference flagellin at low concentrations

MRx0518 flagellin is more potent than DSM100110 flagellin

Lauté-Caly et al., Sci Rep 2019

© 4D pharma plc
MRx0518 AND DSM100110 EXPRESS DIFFERENT FLAGELLINS

MRx0518 and DSM100110 both produce functional, but divergent, flagella

Genotypic and phenotypic characterization

- Highest level of sequence divergence between MRx0518 and DSM100110 FliC sequences located in central variable region
- Regions known to be critical for TLR5 binding in other bacterial species were conserved between both strains

Characterization of additional motile strains

- Selected motile TLR5-activating strains induce IL-8 production in IECs
- Strongest TLR5 activation does not correlate with increased motility or IL-8 production – impact of variations in flagellin sequence?
TLR5 and Flagellin in Cancer: Supporting Literature

- Expression and activation of TLR5-associated pathways is elevated in breast carcinomas.
- Salmonella flagellin activation of TLR5 in breast cancer cells resulted in local cytokine release and inhibition of cell proliferation.
- A Salmonella strain expressing Vibrio vulnificus flagellin had tumour-suppressive effects in a colon cancer model.
- The engineered strain also decreased metastasis.
Programme:
MRx1299 in Immuno-Oncology
MRx1299

- Gram-negative, non-motile, anaerobic bacterium *Megasphaera massiliensis* species within the *Veillonellaceae* family
- Selected for immunostimulatory host response profile and metabolic signature

Effects *in vitro* and *in vivo*

- Increases *in vitro* cytokine production and CD8+/Treg ratio
- Reduces clonogenic survival of different cancer cell lines
- Reduces tumour growth by adoptive cell transfer in syngeneic cancer models

Mechanism of action

- HDAC inhibition, potentially through action of SCFAs pentanoate and/or butyrate
- Enhances anti-tumor activity of CD8+ cytotoxic T cells

Padmanabhan et al., Standards in Genomic Sciences (2013)
OPPORTUNITIES FOR TARGETING HISTONE DEACETYLASE INHIBITION

- Histone deacetylase inhibitors induce gene expression changes through modulating the acetylation/deacetylation of histones and/or non-histone proteins such as transcription factors.

- Class I HDACs in particular have been linked to the development and growth of a range of cancers. We have focused on this activity as a target for anti-cancer candidates.

- HDAC inhibition may lead to re-recognition of the tumour by the immune system and down-modulation of immune-suppressive elements in the tumour microenvironment.

<table>
<thead>
<tr>
<th>HDACi in tumour cells</th>
<th>HDACi in immune cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>• (Immunogenic) cell death</td>
<td>• Activation of cytotoxic cells</td>
</tr>
<tr>
<td>• Upregulation of MHC proteins</td>
<td>• Suppression of regulatory cells, such as MDSCs and Tregs</td>
</tr>
</tbody>
</table>

Haematological malignancies seem to be sensitive to HDAC inhibitors, and pan-HDACi have given favourable results in a small set of patients with selected haematological diseases.

Approval of two structurally distinct HDACis - SAHA (vorinostat, Zolinza™) and FK228 (romidepsin, Istodax™).
TARGETING HISTONE DEACETYLASE INHIBITION BY MRx1299

Megasphaera massiliensis inhibits Class I HDACs through the production of SCFAs

- Class I HDAC isoforms HDACs 2 and 3 are inhibited by *Megasphaera massiliensis* MRx1299
- HDACs are more potently inhibited by MRx1299 than by equivalent concentrations of butyrate
- MRx1299 produces butyrate, and is a rare but prolific producer of pentanoate and hexanoate, both in monoculture and in a complex microbial community
- Pentanoate specifically has potent HDAC1 and HDAC2 inhibitory activity

Yuille et al., PLoS ONE 2018

Simmi: consortium of 17 human gut bacteria developed to model core metabolic cross-feeding functions of the human gut microbiota.

© 4D pharma plc
MRx1299 INCREASES HISTONE ACETYLATION IN MELANOMA CELLS AND INDUCES CLONOGENIC CELL DEATH

MRx1299 increased acetylated H3 and H4 nuclear staining in melanoma (and CRC) cell lines, and this acetylation corresponds to reduced clonogenic growth.
MEGASPHAERA MASSILIENSIS INDUCES CD8+ T CELL-MEDIATED ANTI-TUMOUR IMMUNITY

M. massiliensis induces anti-tumour immune functionality

- Secretion of TNF-α by CTLs was increased after treatment with *M. massiliensis*-derived supernatants

- *M. massiliensis* increased the frequency of IFN-γ+TNF-α+CD8+ T cells

- CTLs pretreated with *M. massiliensis* and adoptively transferred into mice had increased capacity to infiltrate the tumours, produce effector cytokines and eradicate B16OVA cells as compared to control CTLs

- The anti-tumorigenic effects of *M. massiliensis* have been directly linked to histone acetylation in CD4+ and CD8+ cells at CTL-characteristic loci
MRx1299-induced immune activation was investigated in different cell types

- MRx1299 induces a cytokine/chemokine signature that includes IL-6, IL-22, IL-10, TNF-α, CXCL2, CXCL10, CCL3, CCL4 and CCL5, and increases the CD8/Treg ratio \textit{in vitro}
4D PHARMA: ADVANCING MULTIPLE IMMUNO-ONCOLOGY CANDIDATES WITH DIFFERENT MECHANISMS OF ACTION

MRx0518

Species
Enterococcus gallinarum

In vivo efficacy
- Increases tumour immune infiltration
- Increases microbiome diversity
- Reduces tumour growth in multiple tumour types

Mechanism of Action
- Flagellin TLR agonism

Clinical Development
- Phase I, monotherapy biomarker study in treatment naïve patients awaiting surgical resection of solid tumours, enrolling
- Phase I/II, combination with pembrolizumab in solid tumours (NSCLC, renal, melanoma, bladder), enrolling
- Additional studies planned

MRx1299

Species
Megasphaera massiliensis

In vitro effects
- Increases cytokine production and CD8+/Treg ratio
- Reduces clonogenic survival in multiple cancer cell lines

In vivo efficacy
- Reduces tumour growth by adoptive cell transfer in syngeneic cancer models

Mechanism of Action
- SCFAs pentanoate and butyrate inhibit HDAC

Future Development
- Studies of efficacy in pre-clinical models of additional tumours types ongoing
- CMC development and scale-up ongoing
developing science
delivering therapies